An integrated feature selection and cluster analysis techniques for case-based reasoning

نویسندگان

  • Guo-Niu Zhu
  • Jie Hu
  • Jin Qi
  • Jin Ma
  • Ying-hong Peng
چکیده

Feature selection and case organization are crucial steps in case-based reasoning (CBR), since the retrieval efficiency and accuracy even the success of the CBR system are heavily dependent on their quality. However, inappropriate feature selection and case selection together with ill-structured case organization may not only present a dilemma in case retrieval, but also greatly increase the case base. To obtain an efficient CBR system, selection of proper features and suitable cases with appropriate case organization are very important. This paper proposes a hybrid CBR system by introducing reduction technique in feature selection and cluster analysis in case organization. In this study, a minimal set of features is selected from the problem domain while redundant ones are reduced through neighborhood rough set algorithm. Once feature selection is finished, the growing hierarchical self-organizing map (GHSOM) is taken as a cluster tool to organize those cases so that the initial case base can be divided into some small subsets with hierarchical structure. New case is led into corresponding subset for case retrieval. Experiments on UCI datasets and a practical case in electromotor product design show the effectiveness of the proposed approach. The results indicate that the research techniques can effectively enhance the performance of the CBR system. & 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Optimal Feature Selection for Data Classification and Clustering: Techniques and Guidelines

In this paper, principles and existing feature selection methods for classifying and clustering data be introduced. To that end, categorizing frameworks for finding selected subsets, namely, search-based and non-search based procedures as well as evaluation criteria and data mining tasks are discussed. In the following, a platform is developed as an intermediate step toward developing an intell...

متن کامل

Comprehensive causal analysis of occupational accidents’ severity in the chemical industries; A field study based on feature selection and multiple linear regression techniques

Introduction: The causal analysis of occupational accidents’ severity in the chemical industries may improve safety design programs in these industries. This comprehensive study was implemented to analyze the factors affecting occupational accidents’ severity in the chemical industries. Methods and Materials: An analytical study was conducted in 22 chemical industries during 2016-2017. The stu...

متن کامل

An integrated heuristic method based on piecewise regression and cluster analysis for fluctuation data (A case study on health-care: Psoriasis patients)

Trend forecasting and proper understanding of the future changes is necessary for planning in health-care area.One of the problems of analytic methods is determination of the number and location of the breakpoints, especially for fluctuation data. In this area, few researches are published when number and location of the nodes are not specified.In this paper, a clustering-based method is develo...

متن کامل

Application of an integrated decision-making approach based on FDAHP and PROMETHEE for selection of optimal coal seam for mechanization; A case study of the Tazareh coal mine complex, Iran

Increasing the production rate and minimizing the related costs, while optimizing the safety measures, are nowadays’ most important tasks in the mining industry. To these ends, mechanization of mines could be applied, which can result in significant cost reductions and higher levels of profitability for underground mines. The potential of a coal mine mechanization depends on some important fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2015